Zero-Knowledge Proof Implementations in Blockchain
Abstract
This technical note explores zero-knowledge proof (ZKP) implementations in blockchain systems, covering SNARKs, STARKs, and Bulletproofs with practical code examples and performance analysis.
1. ZKP Fundamentals
1.1 Definition and Properties
Zero-knowledge proofs allow proving knowledge of a secret without revealing it:
- Completeness: Honest prover convinces honest verifier
- Soundness: Dishonest prover cannot convince honest verifier
- Zero-Knowledge: Verifier learns nothing beyond the statement’s truth
1.2 Types of ZKPs
- Interactive ZKPs: Require multiple rounds of communication
- Non-Interactive ZKPs (NIZKPs): Single message proofs
- Succinct NIZKPs: Short proofs with fast verification
2. SNARKs Implementation
2.1 Groth16 Protocol
Groth16 provides efficient SNARKs for circuit satisfiability:
use bellman::{Circuit, ConstraintSystem, SynthesisError};
use pairing::bls12_381::{Bls12, Fr};
struct ExampleCircuit {
a: Option<Fr>,
b: Option<Fr>,
c: Option<Fr>,
}
impl Circuit<Fr> for ExampleCircuit {
fn synthesize<CS: ConstraintSystem<Fr>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError> {
let a = cs.alloc(|| "a", || self.a.ok_or(SynthesisError::AssignmentMissing))?;
let b = cs.alloc(|| "b", || self.b.ok_or(SynthesisError::AssignmentMissing))?;
let c = cs.alloc_input(|| "c", || self.c.ok_or(SynthesisError::AssignmentMissing))?;
cs.enforce(|| "a * b = c", |lc| lc + a, |lc| lc + b, |lc| lc + c);
Ok(())
}
}
2.2 Trusted Setup Ceremony
def trusted_setup(circuit, powers):
"""
Generate trusted setup parameters
"""
# Generate toxic waste (should be discarded)
toxic_waste = generate_random_elements()
# Compute powers of tau
tau_powers = [1]
for i in range(1, powers):
tau_powers.append(tau_powers[-1] * tau)
# Generate CRS (Common Reference String)
crs = {
'alpha_tau_powers': [alpha * tau_power for tau_power in tau_powers],
'beta_tau_powers': [beta * tau_power for tau_power in tau_powers],
'gamma': gamma,
'delta': delta
}
return crs
2.3 Proof Generation and Verification
import { groth16 } from 'snarkjs';
async function generateProof(circuitInputs: any) {
const { proof, publicSignals } = await groth16.fullProve(
circuitInputs,
'circuit.wasm',
'circuit_final.zkey'
);
return { proof, publicSignals };
}
async function verifyProof(proof: any, publicSignals: any) {
const vKey = JSON.parse(fs.readFileSync('verification_key.json'));
const isValid = await groth16.verify(vKey, publicSignals, proof);
return isValid;
}
3. STARKs Implementation
3.1 FRI Protocol
Fast Reed-Solomon Interactive Oracle Proofs of Proximity:
class FRI:
def __init__(self, field, expansion_factor=4):
self.field = field
self.expansion_factor = expansion_factor
def commit(self, polynomial):
"""Generate commitment to polynomial"""
# Evaluate polynomial on expanded domain
expanded_domain = self.expand_domain(polynomial.domain)
evaluations = [polynomial.evaluate(x) for x in expanded_domain]
# Generate Merkle tree commitment
merkle_tree = MerkleTree(evaluations)
return merkle_tree.root
def prove(self, polynomial, challenges):
"""Generate FRI proof"""
rounds = []
current_poly = polynomial
for challenge in challenges:
# Split polynomial into even and odd parts
even_poly, odd_poly = self.split_polynomial(current_poly)
# Evaluate at challenge
even_eval = even_poly.evaluate(challenge)
odd_eval = odd_poly.evaluate(challenge)
# Compute quotient
quotient = (even_eval + challenge * odd_eval) / (challenge**2 - 1)
rounds.append({
'even_eval': even_eval,
'odd_eval': odd_eval,
'quotient': quotient,
'merkle_proof': self.generate_merkle_proof(current_poly)
})
# Update current polynomial
current_poly = self.compute_remainder(current_poly, challenge)
return rounds
3.2 STARK Proof Structure
interface STARKProof {
// Constraint evaluations
constraintEvaluations: FieldElement[];
// FRI proofs for each component
traceFRI: FRIProof;
constraintFRI: FRIProof;
boundaryFRI: FRIProof;
// Query positions and proofs
queries: {
positions: number[];
traceValues: FieldElement[];
traceProofs: MerkleProof[];
constraintValues: FieldElement[];
constraintProofs: MerkleProof[];
};
// Additional proof data
auxiliaryPolynomials: Polynomial[];
}
4. Bulletproofs Implementation
4.1 Range Proof Construction
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::ristretto::RistrettoPoint;
pub struct Bulletproof {
V: Vec<RistrettoPoint>, // Value commitments
A: RistrettoPoint, // Pedersen commitment to a_L, a_R
S: RistrettoPoint, // Pedersen commitment to s_L, s_R
T1: RistrettoPoint, // Commitment to t1 coefficient
T2: RistrettoPoint, // Commitment to t2 coefficient
taux: Scalar, // tau * x
mu: Scalar, // alpha - tau * x
L: Vec<RistrettoPoint>, // Left commitments for log rounds
R: Vec<RistrettoPoint>, // Right commitments for log rounds
a: Scalar, // Revealed a
b: Scalar, // Revealed b
t: Scalar, // Revealed t
}
impl Bulletproof {
pub fn prove(value: u64, blinding: Scalar) -> Self {
// Implementation of Bulletproof range proof
// This is a simplified version - full implementation is complex
todo!()
}
pub fn verify(&self) -> bool {
// Verify the range proof
// Check that value is in [0, 2^64)
todo!()
}
}
4.2 Multi-Party Computation
class MPCBulletproof:
def __init__(self, parties: int):
self.parties = parties
self.field = Field(PRIME)
def generate_shares(self, secret: int) -> List[int]:
"""Generate additive shares of secret"""
shares = []
sum_shares = 0
for i in range(self.parties - 1):
share = self.field.random_element()
shares.append(share)
sum_shares = (sum_shares + share) % self.field.modulus
# Last share ensures sum equals secret
last_share = (secret - sum_shares) % self.field.modulus
shares.append(last_share)
return shares
def reconstruct_secret(self, shares: List[int]) -> int:
"""Reconstruct secret from shares"""
return sum(shares) % self.field.modulus
5. Performance Analysis
5.1 Proof Size Comparison
| System | Proof Size | Verification Time | Trusted Setup |
|---|---|---|---|
| Groth16 | ~128 bytes | ~10ms | Required |
| STARK | ~100KB | ~100ms | Not required |
| Bulletproof | ~1KB | ~50ms | Not required |
5.2 Scalability Metrics
def benchmark_zkp_system(system_name: str, circuit_size: int):
"""Benchmark ZKP system performance"""
# Setup phase
start_time = time.time()
if system_name == 'groth16':
setup_result = groth16_setup(circuit_size)
elif system_name == 'stark':
setup_result = stark_setup(circuit_size)
setup_time = time.time() - start_time
# Proof generation
start_time = time.time()
proof = generate_proof(circuit_size)
proof_time = time.time() - start_time
# Verification
start_time = time.time()
is_valid = verify_proof(proof)
verify_time = time.time() - start_time
return {
'setup_time': setup_time,
'proof_time': proof_time,
'verify_time': verify_time,
'proof_size': len(proof)
}
6. Blockchain Integration
6.1 ZK-Rollups Implementation
contract ZKRollup {
using Pairing for *;
struct Batch {
bytes32 stateRoot;
bytes32 transactionsRoot;
bytes proof;
}
mapping(uint256 => Batch) public batches;
uint256 public currentBatch;
function submitBatch(
bytes32 stateRoot,
bytes32 transactionsRoot,
bytes calldata proof
) external {
require(verifyZKProof(proof, stateRoot, transactionsRoot),
"Invalid ZK proof");
batches[currentBatch] = Batch({
stateRoot: stateRoot,
transactionsRoot: transactionsRoot,
proof: proof
});
currentBatch++;
}
function verifyZKProof(
bytes memory proof,
bytes32 stateRoot,
bytes32 transactionsRoot
) internal view returns (bool) {
// Verify SNARK proof
// Implementation depends on specific ZKP system
return true; // Placeholder
}
}
6.2 Privacy-Preserving Transactions
contract ZKTransaction {
struct ZKTransfer {
bytes32 nullifier;
bytes32 commitment;
bytes proof;
}
mapping(bytes32 => bool) public nullifiers;
mapping(bytes32 => bool) public commitments;
function deposit(uint256 amount, bytes32 commitment) external {
// Deposit funds and create commitment
commitments[commitment] = true;
// Transfer tokens to contract
}
function transfer(
bytes32 nullifier,
bytes32 commitment,
bytes calldata proof
) external {
require(!nullifiers[nullifier], "Double spend");
require(!commitments[commitment], "Commitment exists");
// Verify ZK proof
require(verifyTransferProof(proof, nullifier, commitment),
"Invalid proof");
nullifiers[nullifier] = true;
commitments[commitment] = true;
}
function verifyTransferProof(
bytes memory proof,
bytes32 nullifier,
bytes32 commitment
) internal view returns (bool) {
// Verify zero-knowledge proof of valid transfer
return true; // Placeholder
}
}
7. Security Considerations
7.1 Trusted Setup Attacks
def detect_toxic_waste_leak(setup_parameters):
"""
Check if trusted setup parameters were compromised
"""
# Verify that parameters satisfy required properties
# Check for known weak parameters
suspicious_patterns = [
'known_weak_parameter_1',
'known_weak_parameter_2'
]
for pattern in suspicious_patterns:
if pattern in setup_parameters:
return True
return False
7.2 Side-Channel Attacks
use std::time::Instant;
fn constant_time_comparison(a: &[u8], b: &[u8]) -> bool {
if a.len() != b.len() {
return false;
}
let mut result = 0u8;
for (x, y) in a.iter().zip(b.iter()) {
result |= x ^ y;
}
result == 0
}
fn secure_proof_verification(proof: &Proof, public_inputs: &[Fr]) -> bool {
let start = Instant::now();
// Perform verification in constant time
let is_valid = verify_proof_constant_time(proof, public_inputs);
let elapsed = start.elapsed();
// Add random delay to prevent timing attacks
let random_delay = generate_random_delay();
std::thread::sleep(random_delay);
is_valid
}
8. Optimization Techniques
8.1 Circuit Optimization
def optimize_arithmetic_circuit(circuit):
"""
Optimize circuit for better proving performance
"""
# Remove redundant constraints
circuit = remove_redundant_constraints(circuit)
# Optimize gate ordering
circuit = optimize_gate_ordering(circuit)
# Apply linear combination optimizations
circuit = optimize_linear_combinations(circuit)
return circuit
8.2 Parallel Proof Generation
async function parallelProofGeneration(
circuits: Circuit[],
inputs: any[]
): Promise<Proof[]> {
const workerPool = new WorkerPool('./proof-worker.js', 4);
const proofPromises = circuits.map((circuit, index) =>
workerPool.run({
circuit: circuit.serialize(),
inputs: inputs[index]
})
);
return await Promise.all(proofPromises);
}
9. Future Developments
9.1 Recursive ZKPs
def recursive_proof_composition(proof1: Proof, proof2: Proof) -> Proof:
"""
Compose two ZKPs into a single proof
"""
# Create circuit that verifies both proofs
verification_circuit = create_composition_circuit(proof1, proof2)
# Generate proof of the composition
return generate_proof(verification_circuit)
9.2 Universal ZKP Systems
contract UniversalZKP {
mapping(bytes32 => bytes) public verificationKeys;
mapping(bytes32 => bytes32) public programHashes;
function registerProgram(
bytes32 programId,
bytes32 programHash,
bytes calldata verificationKey
) external {
programHashes[programId] = programHash;
verificationKeys[programId] = verificationKey;
}
function verifyProof(
bytes32 programId,
bytes calldata proof,
bytes32[] calldata publicInputs
) external view returns (bool) {
bytes memory vk = verificationKeys[programId];
require(vk.length > 0, "Program not registered");
// Verify proof against registered verification key
return verifyZKP(proof, publicInputs, vk);
}
}
10. Conclusion
Zero-knowledge proofs represent a fundamental advancement in blockchain privacy and scalability. While implementation challenges remain, the technology continues to mature with significant improvements in performance and usability.
References
-
Groth, J. (2016). On the Size of Pairing-Based Non-Interactive Arguments. EUROCRYPT.
-
Ben-Sasson, E., et al. (2018). Scalable Zero Knowledge via Cycles of Elliptic Curves. CRYPTO.
-
Bünz, B., et al. (2018). Bulletproofs: Short Proofs for Confidential Transactions and More. IEEE S&P.
-
Gabizon, A., et al. (2019). PLONK: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. ePrint.
Bibliography
-
Goldwasser, S., et al. (2019). The Knowledge Complexity of Interactive Proof Systems. SIAM Journal on Computing.
-
Micali, S. (1994). CS Proofs. FOCS.
-
Kilian, J. (1992). A Note on Efficient Zero-Knowledge Proofs and Arguments. STOC.
-
Blum, M., et al. (1988). Non-Interactive Zero-Knowledge and Its Applications. STOC.
Code Repositories
Further Reading
- “Zero Knowledge Proofs” by Justin Thaler
- “Proofs, Arguments, and Zero-Knowledge” by Bruce Schneier
- “The ZKP Newsletter” by 0xPARC